جایابی بهینه تولید پراکنده ها و سوئچینگ هوشمند میکروگریدها به منظور افزایش تاب آوری مراکز استراتژیک با الگوریتم HCCA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه غیرانتفاعی غیردولتی رشدیه تبریز ایران

2 دانشگاه آزاد واحد تهران جنوب. گروه مکاترونیک

چکیده

با توجه به زندگی مدرن افزایش مصرف برق در جامعه یک واقعیت اجتناب ناپذیر است.انعطاف پذیری سیستم قدرت، مفهوم جدیدی است که در سیستم قدرت مطرح شده است. در این مقاله ابتدا مفهوم تاب آوری زیر ساخت های شبکه های توزیع برق در حضور منابع DG و نحوه مدل سازی انفجارهای معمو ل به عنوان تخریب در شبکه ارائه می گردد. سپس دود و موج ناشی از انفجار و مواد تخریب‌کننده منفجره در محیط‌های شهری و برون‌شهری به خصوص در مکان-ها یی که با سیستم‌های توزیع برق فاصله نزدیکی داشته و یا در مجاورت آنها قرار دارند که می توانند بر روی انعطاف پذیری سیستم‌های قدرت تاثیرات منفی بگذارند بررسی می شوند. سپس با استفاده از الگوریتم HCCA ورودی ها بررسی شده و بهترین و امن ترین حالت ممکن را انتخاب می کنیم.

کلیدواژه‌ها

موضوعات


[20] ا. جواهری, ر. افشار, ع. سعیدی, راهی ناگزیر. شرکت توزیع نیروی برق مشهد, 1390.
[1]F. Shen, Q. Wu, S. Huang, J. C. López, C. Li, and B. Zhou, "Review of Service Restoration Methods in Distribution Networks," in 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2018, pp. 1-6: IEEE.
[2]   Y. Xu, C. -C. Liu, K. P. Schneider, and D. T. Ton, "Placement of remote-controlled switches to enhance distribution system restoration capability," IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1139-1150, 2016.
[3]   J. C. López, J. F. Franco, M. J. Rider, and R. Romero, "Optimal restoration/maintenance switching sequence of unbalanced three-phase distribution systems," IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6058-6068, 2017.
[4]   A. Moradi and M. Fotuhi-Firuzabad, "Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm," IEEE Transactions on power delivery, vol. 23, no. 1, pp. 271-279, 2008.
[5]   E. De Tuglie, M. La Scala, G. Patrono, P. Pugliese, and F. Torelli, "An optimal strategy for switching devices allocation in radial distribution network," in AFRICON, 2004. 7th AFRICON Conference in Africa, 2004, vol. 2, pp. 683-689: IEEE.
[6]   P. Carvalho, L. Ferreira, and A. C. da Silva, "A decomposition approach to optimal remote controlled switch allocation in distribution systems," IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1031-1036, 2005.
[7]   T. -F. Tsao, Y. -p. Chang, and W. -K. Tseng, "Reliability and costs optimization for distribution system placement problem," in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, 2005, pp. 1-6: IEEE.
[8]   R. E. Brown, "The impact of heuristic initialization on distribution system reliability optimization," ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, vol. 8, no. 1, pp. 45-52, 2000.
[9]S. Lei, J. Wang, and Y. Hou, "Remote-controlled switch allocation enabling prompt restoration of distribution systems," IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3129-3142, 2017.
[10]Gotham, Kevin Fox, and Bradford Powers. , “Building Resilience: Social Capital in Post-Disaster Recovery. ,” Contemporary Sociology: A Journal of Reviews. vol. 44, pp. 30-31, 2015.
[11]Hosseini, S. , Yodo, N. and Wang, P. , , “Resilience modeling and quantification for design of complex engineered systems using Bayesian network,” ASME Paper No. DETC2014-34558, 2014.
[12]Woods, D. D. , , “Four concepts for resilience and the implications for the future of resilience engineering,” Reliability Engineering & System Safety, 141, pp. 5-9, 2015.
[13] Reichl, J. , Schmidthaler, M. and Schneider, F. , , “The value of supply security: The costs of power outages to Austrian households, firms and the public sector,” Energy Economics, vol. 36, pp. 256-261, 2013
 [14] K. Zou, G. Mohy-Ud-Din, A. P. Agalgaonkar, K. M. Muttaqi, and S. Perera, "Distribution System Restoration with Renewable Resources for Reliability Improvement under System Uncertainties," IEEE Transactions on Industrial Electronics, 2019.
[15] R. J. Kafka, D. Penders, S. Bouchey, and M. Adibi, "System restoration plan development for a metropolitan electric system," IEEE Transactions on Power Apparatus and Systems, no. 8, pp. 3703-3713, 1981.
[16] F. Shen, Q. Wu, Y. Xu, F. Li, F. Teng, and G. Strbac, "Hierarchical service restoration scheme for active distribution networks based on ADMM," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105809, 2020.
[17] D. K. Molzahn et al. , "A survey of distributed optimization and control algorithms for electric power systems," IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941-2962, 2017.
[18] S. Mishra, D. Das, and S. Paul, "A comprehensive review on power distribution network reconfiguration," Energy Systems, vol. 8, no. 2, pp. 227-284, 2017.
[19] S. Esmaeili, A. A. Moghaddam, S. Jadid, and J. M. G. Zapata, "Optimal Operational Scheduling of Smart Microgrids Considering Hourly Reconfiguration," in 4th Ieee Southern Power Electronics Conference, 2018: IEEE Press.
[21] C. L. Smallwood and J. Wennermark, "Benefits of distribution automation," IEEE Industry Applications Magazine, vol. 16, no. 1, pp. 65-73, 2010.
[22] L. T. Marques, A. C. B. Delbem, and J. B. A. London, "Service restoration with prioritization of customers and switches and determination of switching sequence," IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2359-2370, 2017.
[23] A. Zidan et al. , "Fault Detection, Isolation, and Service Restoration in Distribution Systems: State-of-the-Art and Future Trends," IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1-16, 2016.
[24] W. Wei, M. Sun, R. Ren, and Y. Wang, "Service restoration of distribution system with priority customers and distributed generation," in IEEE PES Innovative Smart Grid Technologies, 2012, pp. 1-6: IEEE.
[25] Y. Tian, T. Lin, M. Zhang, and X. Xu, "A new strategy of distribution system service restoration using distributed generation," in 2009 International Conference on Sustainable Power Generation and Supply, 2009, pp. 1-5: IEEE
[26] Chen, C. , Wang, J. , Qiu, F. , et al. : ‘Resilient distribution system by microgrids formation after natural disasters’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 958–966
[27] Arriaga, M. , Caizares, C. A. , Kazerani, M. : ‘Long-term renewable energy planning model for remote communities’, IEEE Trans. Sustain. Energy, 2016, 7, pp. 221–231
[28] Lotfi, H. , Khodaei, A. : ‘AC versus DC microgrid planning’, IEEE Trans. Smart Grid, 2017, 8, pp. 296–304
[29] Mitra, J. , Vallem, M. R. , Singh, C. : ‘Optimal deployment of distributed generation using a reliability criterion’, IEEE Trans. Ind. Appl. , 2016, 52, pp. 1989–1997
[30] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, and P. Mancarella, “Power system resilience to extreme weather: fragility modeling, probabilistic impact assessment, and adaptation measures,” IEEE Trans. Power Syst. , vol. 32, no. 5, pp. 3747–3757, 2017.
[31] Manshadi, S. D. , Khodayar, M. E. : ‘Resilient operation of multiple energy carrier microgrids’, IEEE Trans. Smart Grid, 2015, 6, pp. 2283–2292
[32] Zhang, B. , Dehghanian, P. , Kezunovic, M. : ‘Optimal allocation of PV generation and battery storage for enhanced resilience’, IEEE Trans. Smart Grid, 2019, 10, pp. 535–545
[33] Ma, S. , Su, L. , Wang, Z. , et al. : ‘Resilience enhancement of distribution grids against extreme weather events’, IEEE Trans. Power Syst. , 2018, 33, pp. 4842–4853.
[34] Jinye Zhao, Tongxin Zheng, IEEE, and Eugene Litvinov “A Unified Framework for Defining and Measuring Flexibility in Power System” IEEE Transactions on Power Systems (Volume: 31, Issue: 1, Jan. 2016).
[35] Structures to Resist the Effects of Accidental Explosion”, UFC 3-340-02, Unified Facilities Criteria, 2008.
[36] Z. Bie, Y. Lin, G. Li, and F. Li, "Battling the extreme: a study on the power system resilience,"Proceedings of the IEEE, vol. 105, no. 7, pp. 1253-1264, 2017.
[37] M. Panteli, D. Trakas, and P. Mancarella, "Boosting the power grid resilience to extreme weather events using defensive islanding," IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2913-2919, 2016.
[38] S. Lei, J. Wang, C. Chen, and Y. Hou, "Mobile emergency generator pre-positioning and real-time allocation for resilient response to natural disasters," IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2030- 2039, 2018.
[39] M. Zare, A. Abbaspour, M. Fotuhi-Firuzabad, and M. Moein-Aghtaei, "Increasing the resilience of distribution systems against hurricane by optimal switch placement," in Conference on Electrical Power Distribution Networks Conference (EPDC), 19-20 April 2017, Semnan, Iran, 2017.
[40] S. Yao, P. Wang, and T. Zhao, "Transportable energy storage for more resilient distribution systems with multiple microgrids," IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3331-3340, 2019.
[41] A. Berkeley, M. Wallace, and C. Coo, "A Framework For Establishing Critical Infrastructure Resilience Goals," Final Report and Recommendations by the Council, National Infrastructure Advisory Council, October 2010.
[42] D. Cai, X. Li, and Y. Wang, et al. , "Impact of natural disasters on the western Hubei power grid and its anti-disaster enhancement measures," The Journal of Engineering, vol. 2019, no. 16, pp. 1976-1980, 2019.
[43] M. Mohamed, T. Chen, W. Su and T. Jin, "Proactive Resilience of Power Systems Against Natural Disasters: A Literature Review," IEEE Access, vol. 7, pp. 163778-163795, 2019.
[44] P. Karimyan, G. B. Gharehpetian, M. Abedi, and A. Gavili, "Long term scheduling for optimal allocation and sizing of DG unit considering load variations and DG type," International Journal of Electrical Power & Energy Systems, vol. 54, pp. 277-287, 2014.
[45] P. Li, D. Huang, J. Ruan, and H. Qin et al. , "Influence of Forest Fire Particles on the Breakdown Characteristics of Air Gap," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 4, pp. 1974-1983, 2016.
[46] K. Charzan, and Z. Wroblebski, "The threat caused by fires under high voltage lines," in 15 st International Conference on Advances in Processing, Testing and Application of Dielectric Materials, Wrocław University of Technology, Wrocław, Poland, Conference 15, no. 40, 2014.
[47] D. Trakas, and N. Hatziargyriou, "Optimal Distribution Operation For Enhancing Resilience Against Wildfire," IEEE Transactions on Power Systems, vol. 33 , no. 2, pp. 1-12, 2018.
[48] S. Ma, L. Su, Z. Wang, F. Qiu, and G. Guo, "Resilience enhancement of distribution grids against extreme weather events," IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4842-4853, 2018.
[49] M. Panteli, C. Pickering, and S. Wilkinson, et al. , "Power system resilience to extreme weather: fragility modeling, probabilistic impact assessment, and adaptation measures," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3747–3757, 2017.
[50] A. Bagchi, A. Sprintson and C. Singh, "Modeling the impact of fire spread on the electrical distribution network of a virtual city," 41st North American Power Symp, Starkville, MS, USA, pp. 1-6, 2009.
[51] S. Mohagheghi, and S. Rebennack, "Optimal resilient power grid operation during the course of a progressing wildfire," International Journal of Electrical Power & Energy Systems, vol. 73, pp. 843-852, 2015.
[52] B. Ansari, and S. Mohagheghi, "Optimal energy dispatch of the power distribution network during the course of a progressing wildfire," International Transactions on Electrical Energy Systems, vol. 25, pp. 3422-3438, 2015.
[53] Delfanti, M. ; Falabretti, D. ; Merlo, M. “Dispersed Generation Impact on Distribution Network Losses”; Electric Power Systems Research 2013, 97, 10–18.
[54] Murali, M. ; Sharath Kumar, P. ; Vijetha, K. “Adaptive Relaying of Radial Distribution System with Distributed Generation”; Int. J. Elec. Comput. Eng. 2013, 3, 407-414.
[55] Brahma, S. M. ; Girgis, A. A. “Distribution System Protective Device Coordination in Presence of Distributed Generation”; Int. J. Power Energy Syst. 2004, 24–1, 32–37.
[56] Dugan, R. ; McDermott, T. “Distributed Generation”; IEEE Ind. Appl. Mag. 2002, 8, 19–25.
[57] “Power System Relaying Committee, Impact of Distributed Resources on Distribution Relay Protection”; Online Available: http: //www. pes-psrc. org/.
[58] Y. Wang, C. Chen, J. Wang and R. Baldick, "Research on resilience of power systems under natural disasters-a review", IEEE Trans. Power Syst. , vol. 31, no. 2, pp. 1604–1613, Mar. 2016.
[59] B. Zhang, P. Dehghanian and M. Kezunovic, "Optimal Allocation of PV Generation and Battery Storage for Enhanced Resilience", IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 535-545, Jan. 2019.
[60] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, "Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding", IEEE Trans. Smart Grid, Vol. 7, no. 6, pp. 2913 – 2922, Nov. 2016.
[61] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," in IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401-1407, April 1989, doi: 10. 1109/61. 25627.