Land wargame simulation using fractional order Lanchester differential equations

Document Type : Original Article

Authors

1 Assistant Professor, Imam Ali Officer University. Tehran, Iran.

2 Department of science and technology studies, AJA Command and Staff University. Tehran, Iran.

3 Assistant Professor,AJA Command and Staff University. Tehran.Iran.

4 Researcher, Institute for Research in Fundamental Sciences (IPM),Tehran.Iran.

Abstract

Lanchester equations are frequently applied in simulating wargames and modeling the population dynamics of combat forces of groups involved in operational areas. These equations can provide an estimate of the population of the two groups in the future and determine the victorious force of the war by considering factors such as the casualty rate of internal forces and enemy forces. However, all the calculations performed in these models are done according to the momentary changes in population dynamics. While the events that happened in the past can be effective in determining the future status of the forces. For this purpose, in this article, we intend to add the memory mechanism in the Lanchester equations by using fractional derivatives and analyzing it from a military perspective. Then, by applying a fractional multistep scheme, we will simulate these equations. Finally, by presenting some examples, we will examine and study the behavior of the proposed fractional Lanchester equations. The numerical scheme used in this paper is an Adams-Moulton-Bashforth fractional multistep scheme for Caputo sense fractional derivatives, which can simulate differential equation problems with high stability and accuracy. The results obtained in this paper show that by reducing the order of the derivative in the Lanchester equations and using memory in the model, the loss rate increase compared to the normal models.

Keywords


 [1]مرادیان، محسن؛ شعبانی فرد، علیرضا و کلانتری فتح الله. (۱۳۹۳). تاثیر به‌کارگیری فناوری اطلاعات بر توسعه و توانمندی منابع انسانی دانشگاه‌های افسری آجا. فصلنامه علوم و فنون نظامی، 10 (۳۰).
 
 [2]مرادیان، محسن؛ مومنی فرد، حسین و پرتوی، محمد تقی. (۱۳۹۴). کاربرد‌های داده‌کاوی در تصمیم‌گیری فرماندهان و مدیران نظامی. فصلنامه علون و فنون نظامی، 11(۳۱).
 
[3] Alidousti, J. , & Ghahfarokhi, M. M. (2019). Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey.  Applied Mathematical Modelling72, 385-402.
[4] Atkinson, M. P. , Gutfraind, A. , & Kress, M. (2012). When do armed revolts succeed: lessons from Lanchester theory?.  Journal of the Operational Research Society63(10), 1363-1373.
[5] Biranvand, N. , Vahidi, A. R. , & Babolian, E. (2021). An improved model along with a spectral numerical simulation for fractional predator–prey interactions.  Engineering with Computers, 1-14.
[6] Coulson, S. G. (2019). Lanchester modelling of intelligence in combat.  IMA Journal of Management Mathematics30(2), 149-164.
[7] Dang, Q. A. , & Hoang, M. T. (2019). Nonstandard finite difference schemes for a general predator–prey system.  Journal of Computational Science36, 101015.
[8] Das, S. , & Gupta, P. K. (2011). A mathematical model on fractional Lotka–Volterra equations.  Journal of Theoretical Biology277(1), 1-6.
[9] Dehghan, M. , & Sabouri, M. (2013). A Legendre spectral element method on a large spatial domain to solve the predator–prey system modeling interacting populations.  Applied Mathematical Modelling37(3), 1028-1038.
[10] Deitchman, S. J. (1962). A Lanchester model of guerrilla warfare.  Operations Research10(6), 818-827.
[11] Diethelm, K. , & Freed, A. D. (1998). The FracPECE subroutine for the numerical solution of differential equations of fractional order.  Forschung und wissenschaftliches Rechnen1999, 57-71.
[12] Diethelm, K. , Ford, N. J. , & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations.  Nonlinear Dynamics29(1), 3-22.
[13] Diethelm, K. , Ford, N. J. , & Freed, A. D. (2004). Detailed error analysis for a fractional Adams method.  Numerical algorithms36(1), 31-52.
[14] Doha, E. H. , Bhrawy, A. H. , & Ezz-Eldien, S. S. (2011). A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order.  Computers & Mathematics with Applications62(5), 2364-2373.
[15] Doha, E. H. , Bhrawy, A. H. , & Ezz-Eldien, S. S. (2012). A new Jacobi operational matrix: an application for solving fractional differential equations.  Applied Mathematical Modelling36(10), 4931-4943.
[16] Du, M. , Wang, Z. , & Hu, H. (2013). Measuring memory with the order of fractional derivative.  Scientific reports3(1), 1-3.
[17] Galeone, L. , & Garrappa, R. (2008). Fractional adams–moulton methods.  Mathematics and Computers in Simulation79(4), 1358-1367.
[18] Garrappa, R. (2009). On some explicit Adams multistep methods for fractional differential equations.  Journal of computational and applied mathematics229(2), 392-399.
[19] Ghanbari, B. , & Djilali, S. (2020). Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population.  Chaos, Solitons & Fractals138, 109960.
[20] Ghanbari, B. , Günerhan, H. , & Srivastava, H. M. (2020). An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model.  Chaos, Solitons & Fractals138, 109910.
[21] González, E. , & Villena, M. (2011). Spatial lanchester models.  European Journal of Operational Research210(3), 706-715.
[22] Hajimohammadi, Z. , Baharifard, F. , Ghodsi, A. , & Parand, K. (2021). Fractional Chebyshev deep neural network (FCDNN) for solving differential models.  Chaos, Solitons & Fractals153, 111530.
[23] Hartley III, D. S. , & Helmbold, R. L. (1995). Validating Lanchester's square law and other attrition models.  Naval Research Logistics (NRL)42(4), 609-633.
[24] Heymans, N. , & Podlubny, I. (2006). Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives.  Rheologica Acta45(5), 765-771.
[25] Homer-Dixon, T. F. (1987). A common misapplication of the Lanchester square law: a research note.  International Security12(1), 135-139.
[26] Jafari, H. , Ganji, R. M. , Nkomo, N. S. , & Lv, Y. P. (2021). A numerical study of fractional order population dynamics model.  Results in Physics27, 104456.
[27] Kamimura, A. , Burani, G. F. , & França, H. M. (2011). The economic system seen as a living system: a Lotka-Volterra framework.  Emergence: Complexity and Organization13(3), 80.
[28] Keane, T. (2011). Combat modelling with partial differential equations.  Applied Mathematical Modelling35(6), 2723-2735.
[29] Kress, M. (2020). Lanchester models for irregular warfare.  Mathematics8(5), 737.
[30] Kress, M. , Caulkins, J. P. , Feichtinger, G. , Grass, D. , & Seidl, A. (2018). Lanchester model for three-way combat.  European Journal of Operational Research264(1), 46-54.
[31] Kumar, S. , Kumar, R. , Agarwal, R. P. , & Samet, B. (2020). A study of fractional Lotka‐Volterra population model using Haar wavelet and Adams‐Bashforth‐Moulton methods.  Mathematical Methods in the Applied Sciences43(8), 5564-5578.
[32] Kumar, A. , & Kumar, S. (2022). A study on eco-epidemiological model with fractional operators.  Chaos, Solitons & Fractals156, 111697.
[33] Lanchester, F. W. (1956). Mathematics in warfare.  The world of mathematics4(Part XX), 2138-2157.
[34] Lepingwell, J. W. (1987). The laws of combat?: Lanchester reexamined.  International Security12(1), 89-134.
[35] Li, C. , & Tao, C. (2009). On the fractional Adams method.  Computers & Mathematics with Applications58(8), 1573-1588.
[36] Marshall, J. (2009). Wargaming for Leaders: Strategic Decision-Making from the Battlefield to the Boardroom.  Financial Executive25(1), 13-14.
[37] Mason, R. C. (2018). Wargaming: its history and future.  The International Journal of Intelligence, Security, and Public Affairs20(2), 77-101.
[38] Miller, K. S. , & Ross, B. (1993).  An introduction to the fractional calculus and fractional differential equations. Wiley.
[39] Owolabi, K. M. (2021). Numerical approach to chaotic pattern formation in diffusive predator–prey system with Caputo fractional operator.  Numerical Methods for Partial Differential Equations37(1), 131-151.
[40] Pakniyat, A. , Parand, K. , & Jani, M. (2021). Least squares support vector regression for differential equations on unbounded domains.  Chaos, Solitons & Fractals151, 111232.
[41] Pang, G. , Lu, L. , & Karniadakis, G. E. (2019). fPINNs: Fractional physics-informed neural networks.  SIAM Journal on Scientific Computing41(4), A2603-A2626.
[42] Perla, P. P. (1990).  The art of wargaming: A guide for professionals and hobbyists. Naval Institute Press.
[43] Pitolli, F. (2018). A fractional B-spline collocation method for the numerical solution of fractional predator-prey models.  Fractal and Fractional2(1), 13.
[44] Protopopescu, V. , Santoro, R. T. , & Dockery, J. (1989). Combat modeling with partial differential equations.  European Journal of Operational Research38(2), 178-183.
[45] Renganathan, K. , Ananthaswamy, V. , & Narmatha, S. (2021). Mathematical analysis of prey predator system with immigrant prey using a new approach to Homotopy perturbation method.  Materials Today: Proceedings37, 1183-1189.
[46] Ross, B. (1975). A brief history and exposition of the fundamental theory of fractional calculus.  Fractional calculus and its applications, 1-36.
[47] Saadatmandi, A. , & Dehghan, M. (2010). A new operational matrix for solving fractional-order differential equations.  Computers & mathematics with applications59(3), 1326-1336.
[48] Spradlin, C. , & Spradlin, G. (2007). Lanchester’s equations in three dimensions.  Computers & Mathematics with Applications53(7), 999-1011.
[49] Tarasov, V. E. (2009). Differential equations with fractional derivative and universal map with memory.  Journal of Physics A: Mathematical and Theoretical42(46), 465102.
[50] Taylor, J. G. (1983). Lanchester models of warfare, military applications section.  Operations Research Society of America, Baltimore, Md.
[51] Taylor, J. G. , & Brown, G. G. (1976). Canonical methods in the solution of variable-coefficient Lanchester-type equations of modern warfare.  Operations research24(1), 44-69.
[52] Teodoro, G. S. , Machado, J. T. , & De Oliveira, E. C. (2019). A review of definitions of fractional derivatives and other operators.  Journal of Computational Physics388, 195-208.
[53] Turnitsa, C. , Blais, C. , & Tolk, A. (Eds.). (2021).  Simulation and Wargaming. Wiley.
[54] Tyutyunov, Y. V. , & Titova, L. I. (2020). From Lotka–Volterra to Arditi–Ginzburg: 90 years of evolving trophic functions.  Biology Bulletin Reviews10(3), 167-185.
[55] Zabidi, N. A. , Abdul Majid, Z. , Kilicman, A. , & Rabiei, F. (2020). Numerical Solutions of Fractional Differential Equations by Using Fractional Explicit Adams Method.  Mathematics8(10), 1675.